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In a recent paper [l], hl C Payne has analysed the method originally introduced by 
two of us to perform molecular dynamics simulations with interatomic forces derived 
directly from the electronic ground state [2]. However the equations quoted in [l] do 
not correspond entirely to the original procedure. For this reason we have decided to 
write a joint comment in order to outline the differences and explain the consequences. 

We restate briefly the terms of the discussion. In a molecular dynamics simulation, 
classical trajectories for the nuclei (or the ions in a pseudopotential formulation) are 
obtained by solving the set of Newton’s equations of motion that can be derived from 
the Lagrangian 

4 = J(1 -@({RI) )  (1) 

Here ICl = XI $ M I A ;  is the kinetic energy of the ions and @({It,}) is their potential 
energy. MI and RI are ionic masses and positions, respectively. According to the 
Born-Oppenheimer approximation @ is related to the instantaneous electronic ground 
state, i.e. within density-functional theory: 

@(I%)) = e; EI{$1lj {RI11 (2) 

Here E is the Kohn-Sham energy functional and {$J are a set of occupied orthonor- 
mal singleparticle orbitals in terms of which the ground-state electronic charge density 
is n ( ~ )  = XI I G1(v) 1’. The term E contains the ground-state quantum energy of the 
electrons as well as the Coulomb energy of the ions. Since the Lagrangian LI does not 
depend explicitly on time the total internal energy VI = Ifl + @({RI}) is a constant 
of motion. 

Rather than solving equation (2) and Newton’s equations for the ions separately, 
a generalized purely classical Lagrangian was  introduced in [2] for both electronic and 
ionic degrees of freedom: 
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where K,  = p J d r  I 4 1' is a classical kinetic energy term associated with the elec- 
tronic degrees of freedom {$[(r)) ,  p is a parameter that  controls the timescale of the 
electronic motion and Aij are Lagrangian multipliers that  impose the orthonormal- 
ity constraints between the orbitals. From equation (3) one derives the equations of 
motion: 

i 

aE M R  -_- 
I I -  aR; 

Here H is the single-particle Kohn-Sham Hamiltonian [3], and 

(4) 

The orthonormality constraints are holonomic and the total internal energy UeI = 
ii, j- KI + E[{$,], {rI]] is a constant of motion for the trajectories generated by equa- 
tions (4). In order to reproduce the physical ionic trajectories with equations (4), the 
fictitious electron dynamics must be characterized by frequencies much larger than 
those of the ions. In this case the coupling between the two subsystems (i.e. clcctrons 
and ions) is weak and, if the electrons were initially at  rest in the ground state, they will 
follow adiabatically the ionic motion, remaining very close to the instantaneous ground 
state. In such a case the fictitious classical system (3) provides an efficient loo1 to per- 
form MD simulations for the ions with forces that obey equation (2) without explicitly 
solving it at  every time step. This implies that the energy U{ = If, + E[{$,), {q)] is 
approximately constant and very close to U,. The smallest electronic frequency is of 
the order of ( E J p ) $  [4], where Eg IS the energy gap in the single-particle electronic 
spectrum. Since p is a disposable parameter, one can always dynamically decouple 
electrons and ions for an insulating system ( E ,  > 0). When this occurs electrons and 
ions are not in thermal equilibrium. This is a metastable situation. However the time 
needed for energy equipartition between electrons and ions is larger than physical ionic 
relaxation times. This allows one to perform meaningful statistical averages. 

Here we prove this point numerically by performing a test run on a system con- 
sisting of 16 silicon atoms with periodic boundary conditions and a plancwave energy 
cut-off of 6 Ry. The ionic system was equilibrated at T - 390 K with the electrons 
in the ground state. The system was then allowed to evolve freely under the action of 
equations (4), which were numerically integrated by using the Verlet algorithm and by 
imposing the orthonormality constraints as discussed in [5]. In figure l(a) we plot IC,, 
E[{$I},  {q}] and their sum U/. On the scale of the picture U; M constant. IIowever 
if we enlarge the scale by two orders of magnitude as in figure I(b),  U! shows some 
variations. These are exactly compensated by Ke,  leading to constant U,, within nu- 
merical accuracy. The variations in U{ are much smaller than the typical variations 
in either IfI or E[{$J,{r1)]. No canonical drift in U; is observed. This corresponds 
to a metastable situation in which the temperature of the electrons is much smaller 
than that of the ions. The lifetime of this metastable state is much longer than typical 
ionic relaxation times. Indeed we have continued the run for a much longer time than 
is shown in figure 1 and we have not observed any appreciable drift in U;. During 
the entire run Ke remained very small with no canonicd drift. Since Ife measures 
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Figure 1. Time variation of electronic and ionic properties for a segment of 2000 
time steps of a much longer m (At  = 7 au, p = 300 au). (a )  h'l (broken curve), 
E[{$ l } , {q } ]  (chain curve), Cl;  (full curve); (6) h= (broken curve), U; (chain curve), 
U.1 (fuU curve). The parameters E, U;, U,I are measured relative to the initial value 
U.1 = -61.62887 au. 

the deviation from the Born-Oppenheimer surface, this implies that during the run 
Uf({rJ) s @ ( { r I } ) .  We have checked numerically that this was the case. The small- 
ness of K, ensures adequate evaluation of the ionic forces. 

The results shown in figure 1 illustrate a number of features of the Car-Parrinello 
method which should be noted. Firstly, the kinetic energy of the electrons is not a 
simple fraction of the kinetic energy of the ions as would be expected if the electrons 
were continuously in the instantaneous ground state. Instead the kinetic energy of 
the electrons shows small fluctuations on a timescale shorter than that of the ionic 
motion. The magnitude of these fluctuations represent the error in the electronic 
configuration, i.e. the distance of the electrons from the Born-Oppenheimer surface. 
The magnitude of these fluctuations is of the order of 2 . 5 ~  lo-' au. Although these are 
extremely small, the crucial point is how these errors vary with time. This is where the 
equations of motion play a critical role. Provided that the timescales of the electronic 
and ionic systems are well separated this error remains bounded and does not increase 
continuously with time, at least over the timescale of a typical simulation. The second 
point is that a molecular dynamics calculation differs qualitatively from a simulation 
performed using empirical potentials. The kinetic energy of the electrons is part of 
the conserved total energy of the complete dynamical system in a molecular dynamics 
calculation. If the kinetic energy of the electrons varies with time then the energy 
of the ionic system aould also have to vary in order to keep the total energy of the 
system constant. As clearly illustrated in figure l ( b )  the effect of the variation in the 
kinetic energy of the electrons during the molecular dynamics simulation is to produce 
fluctuations of the order of 0.5% of the kinetic ionic energy in the total energy of the 
ionic system. The canonical drift is at least two orders of magnitude smaller. This 
is comparable with the canonical drift of conventional MD simulations. In this case, 
however, the instantaneous fluctuations are much smaller because they are related only 
to the finite time step used in the numerical integration of the equations of motion. 
Finally, the ionic trajectories in the molecular dynamics simulation will be modulated 
by the fluctuations in the electronic system. Provided that the timescales of these 
modulations are much shorter than ionic timescales it is expected that the average 
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forces acting on the ions and consequently the ionic trajectories will be accurate. In 
metals and other systems where Eg % 0, part of the electronic frequency spectrum 
will always overlap with the ionic modes. A t  variance with the behaviour illustrated 
above, this leads to much faster equilibrium and consequent departure from the BO 
surface. In this case, as discussed in [6] ,  systematic electron minimizations are needed 
to maintain the system close to the BO surface. In addition, energy will have to 
be continuously supplied to the ionic degrees of freedom to make up for the energy 
which has been transferred to the electronic degrees of freedom. This can be done 
dynamically using two Nose thermostats, one attached to the ions and the other to 
the electrons [q. 

In [I] the equations of motion for the electrons are: 

p &  = - H $ J i + A ; $ J i  (6)  

where 

hi = Hii . (7) 

These equations are different from equations (4) and (5) and cannot be derived from 
the Lagrangian (3). As discussed in [l], they do not lead to a conservative dynamics. 
In addition, the Lagrangian multipliers given in (7) do not preserve orthonormality, 
which is enforced by a Gram-Schmidt or a similar orthonormalization procedure. As 
a consequence, even in the case of insulators, equations (6) do not guarantee that 
the electrons will remain for a long time close to the ground state when coupled to 
ionic motion. In order to obtain physical ionic trajectories, in all cases (insulators and 
metals) the dynamics must be supplemented with systematic electronic minimizations. 

Since the electrons are never exactly in the ground state it is important to estimate 
the error in the ionic trajectories. I t  is well known that Hellman-Feynman (HF) forces 
are very sensitive even to small departures from the BO surface. The analysis in [l], 
based on a perturbative approach, shows that the error in the HF forces oscillates when 
using second-order equations for the electron dynamics. Instead, it is single-signed 
when using first-order equations, as for example in the steepest descent minimization 
approach. One has to ensure that the oscillating error averages out in a time shorter 
than typical ionic tirnescales. The perturbative analysis of [I] is strictly valid only 
for short time evolution. On a longer timescale one has to rely either on numerical 
tests or on sophisticated mathematical arguments that discuss the stability of complex 
dynamical systems [8]. An alternative way to perform molecular dynamics simulations 
based on efficient conjugate gradients minimization for the electrons to the BO surface 
has been recently proposed [9]. 
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